Business

3D modeling you can feel

Essential for many industries ranging from Hollywood computer-generated imagery to product design, 3D modeling tools often use text or image prompts to dictate different aspects of visual appearance, like color and form. As much as this makes sense as a first point of contact, these systems are still limited in their realism due to their neglect of something central to the human experience: touch.

Fundamental to the uniqueness of physical objects are their tactile properties, such as roughness, bumpiness, or the feel of materials like wood or stone. Existing modeling methods often require advanced computer-aided design expertise and rarely support tactile feedback that can be crucial for how we perceive and interact with the physical world.

With that in mind, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have created a new system for stylizing 3D models using image prompts, effectively replicating both visual appearance and tactile properties.

The CSAIL team’s “TactStyle” tool allows creators to stylize 3D models based on images while also incorporating the expected tactile properties of the textures. TactStyle separates visual and geometric stylization, enabling the replication of both visual and tactile properties from a single image input.

PhD student Faraz Faruqi, lead author of a new paper on the project, says that TactStyle could have far-reaching applications, extending from home decor and personal accessories to tactile learning tools. TactStyle enables users to download a base design — such as a headphone stand from Thingiverse — and customize it with the styles and textures they desire. In education, learners can explore diverse textures from around the world without leaving the classroom, while in product design, rapid prototyping becomes easier as designers quickly print multiple iterations to refine tactile qualities.

“You could imagine using this sort of system for common objects, such as phone stands and earbud cases, to enable more complex textures and enhance tactile feedback in a variety of ways,” says Faruqi, who co-wrote the paper alongside MIT Associate Professor Stefanie Mueller, leader of the Human-Computer Interaction (HCI) Engineering Group at CSAIL. “You can create tactile educational tools to demonstrate a range of different concepts in fields such as biology, geometry, and topography.”

Traditional methods for replicating textures involve using specialized tactile sensors — such as GelSight, developed at MIT — that physically touch an object to capture its surface microgeometry as a “heightfield.” But this requires having a physical object or its recorded surface for replication. TactStyle allows users to replicate the surface microgeometry by leveraging generative AI to generate a heightfield directly from an image of the texture.

On top of that, for platforms like the 3D printing repository Thingiverse, it’s difficult to take individual designs and customize them. Indeed, if a user lacks sufficient technical background, changing a design manually runs the risk of actually “breaking” it so that it can’t be printed anymore. All of these factors spurred Faruqi to wonder about building a tool that enables customization of downloadable models on a high level, but that also preserves functionality.

In experiments, TactStyle showed significant improvements over traditional stylization methods by generating accurate correlations between a texture’s visual image and its heightfield. This enables the replication of tactile properties directly from an image. One psychophysical experiment showed that users perceive TactStyle’s generated textures as similar to both the expected tactile properties from visual input and the tactile features of the original texture, leading to a unified tactile and visual experience.

TactStyle leverages a preexisting method, called “Style2Fab,” to modify the model’s color channels to match the input image’s visual style. Users first provide an image of the desired texture, and then a fine-tuned variational autoencoder is used to translate the input image into a corresponding heightfield. This heightfield is then applied to modify the model’s geometry to create the tactile properties.

The color and geometry stylization modules work in tandem, stylizing both the visual and tactile properties of the 3D model from a single image input. Faruqi says that the core innovation lies in the geometry stylization module, which uses a fine-tuned diffusion model to generate heightfields from texture images — something previous stylization frameworks do not accurately replicate.

Looking ahead, Faruqi says the team aims to extend TactStyle to generate novel 3D models using generative AI with embedded textures. This requires exploring exactly the sort of pipeline needed to replicate both the form and function of the 3D models being fabricated. They also plan to investigate “visuo-haptic mismatches” to create novel experiences with materials that defy conventional expectations, like something that appears to be made of marble but feels like it’s made of wood.

Faruqi and Mueller co-authored the new paper alongside PhD students Maxine Perroni-Scharf and Yunyi Zhu, visiting undergraduate student Jaskaran Singh Walia, visiting masters student Shuyue Feng, and assistant professor Donald Degraen of the Human Interface Technology (HIT) Lab NZ in New Zealand.

Picture of John Doe
John Doe

Sociosqu conubia dis malesuada volutpat feugiat urna tortor vehicula adipiscing cubilia. Pede montes cras porttitor habitasse mollis nostra malesuada volutpat letius.

Related Article

Leave a Reply

Your email address will not be published. Required fields are marked *

We would love to hear from you!

Please record your message.

Record, Listen, Send

Allow access to your microphone

Click "Allow" in the permission dialog. It usually appears under the address bar in the upper left side of the window. We respect your privacy.

Microphone access error

It seems your microphone is disabled in the browser settings. Please go to your browser settings and enable access to your microphone.

Speak now

00:00

Canvas not available.

Reset recording

Are you sure you want to start a new recording? Your current recording will be deleted.

Oops, something went wrong

Error occurred during uploading your audio. Please click the Retry button to try again.

Send your recording

Thank you

Meet Eve: Your AI Training Assistant

Welcome to Enlightening Methodology! We are excited to introduce Eve, our innovative AI-powered assistant designed specifically for our organization. Eve represents a glimpse into the future of artificial intelligence, continuously learning and growing to enhance the user experience across both healthcare and business sectors.

In Healthcare

In the healthcare category, Eve serves as a valuable resource for our clients. She is capable of answering questions about our business and providing "Day in the Life" training scenario examples that illustrate real-world applications of the training methodologies we employ. Eve offers insights into our unique compliance tool, detailing its capabilities and how it enhances operational efficiency while ensuring adherence to all regulatory statues and full HIPAA compliance. Furthermore, Eve can provide clients with compelling reasons why Enlightening Methodology should be their company of choice for Electronic Health Record (EHR) implementations and AI support. While Eve is purposefully designed for our in-house needs and is just a small example of what AI can offer, her continuous growth highlights the vast potential of AI in transforming healthcare practices.

In Business

In the business section, Eve showcases our extensive offerings, including our cutting-edge compliance tool. She provides examples of its functionality, helping organizations understand how it can streamline compliance processes and improve overall efficiency. Eve also explores our cybersecurity solutions powered by AI, demonstrating how these technologies can protect organizations from potential threats while ensuring data integrity and security. While Eve is tailored for internal purposes, she represents only a fraction of the incredible capabilities that AI can provide. With Eve, you gain access to an intelligent assistant that enhances training, compliance, and operational capabilities, making the journey towards AI implementation more accessible. At Enlightening Methodology, we are committed to innovation and continuous improvement. Join us on this exciting journey as we leverage Eve's abilities to drive progress in both healthcare and business, paving the way for a smarter and more efficient future. With Eve by your side, you're not just engaging with AI; you're witnessing the growth potential of technology that is reshaping training, compliance and our world! Welcome to Enlightening Methodology, where innovation meets opportunity!