Business

New method efficiently safeguards sensitive AI training data

Data privacy comes with a cost. There are security techniques that protect sensitive user data, like customer addresses, from attackers who may attempt to extract them from AI models — but they often make those models less accurate.

MIT researchers recently developed a framework, based on a new privacy metric called PAC Privacy, that could maintain the performance of an AI model while ensuring sensitive data, such as medical images or financial records, remain safe from attackers. Now, they’ve taken this work a step further by making their technique more computationally efficient, improving the tradeoff between accuracy and privacy, and creating a formal template that can be used to privatize virtually any algorithm without needing access to that algorithm’s inner workings.

The team utilized their new version of PAC Privacy to privatize several classic algorithms for data analysis and machine-learning tasks.

They also demonstrated that more “stable” algorithms are easier to privatize with their method. A stable algorithm’s predictions remain consistent even when its training data are slightly modified. Greater stability helps an algorithm make more accurate predictions on previously unseen data.

The researchers say the increased efficiency of the new PAC Privacy framework, and the four-step template one can follow to implement it, would make the technique easier to deploy in real-world situations.

“We tend to consider robustness and privacy as unrelated to, or perhaps even in conflict with, constructing a high-performance algorithm. First, we make a working algorithm, then we make it robust, and then private. We’ve shown that is not always the right framing. If you make your algorithm perform better in a variety of settings, you can essentially get privacy for free,” says Mayuri Sridhar, an MIT graduate student and lead author of a paper on this privacy framework.

She is joined in the paper by Hanshen Xiao PhD ’24, who will start as an assistant professor at Purdue University in the fall; and senior author Srini Devadas, the Edwin Sibley Webster Professor of Electrical Engineering at MIT. The research will be presented at the IEEE Symposium on Security and Privacy.

Estimating noise

To protect sensitive data that were used to train an AI model, engineers often add noise, or generic randomness, to the model so it becomes harder for an adversary to guess the original training data. This noise reduces a model’s accuracy, so the less noise one can add, the better.

PAC Privacy automatically estimates the smallest amount of noise one needs to add to an algorithm to achieve a desired level of privacy.

The original PAC Privacy algorithm runs a user’s AI model many times on different samples of a dataset. It measures the variance as well as correlations among these many outputs and uses this information to estimate how much noise needs to be added to protect the data.

This new variant of PAC Privacy works the same way but does not need to represent the entire matrix of data correlations across the outputs; it just needs the output variances.

“Because the thing you are estimating is much, much smaller than the entire covariance matrix, you can do it much, much faster,” Sridhar explains. This means that one can scale up to much larger datasets.

Adding noise can hurt the utility of the results, and it is important to minimize utility loss. Due to computational cost, the original PAC Privacy algorithm was limited to adding isotropic noise, which is added uniformly in all directions. Because the new variant estimates anisotropic noise, which is tailored to specific characteristics of the training data, a user could add less overall noise to achieve the same level of privacy, boosting the accuracy of the privatized algorithm.

Privacy and stability

As she studied PAC Privacy, Sridhar hypothesized that more stable algorithms would be easier to privatize with this technique. She used the more efficient variant of PAC Privacy to test this theory on several classical algorithms.

Algorithms that are more stable have less variance in their outputs when their training data change slightly. PAC Privacy breaks a dataset into chunks, runs the algorithm on each chunk of data, and measures the variance among outputs. The greater the variance, the more noise must be added to privatize the algorithm.

Employing stability techniques to decrease the variance in an algorithm’s outputs would also reduce the amount of noise that needs to be added to privatize it, she explains.

“In the best cases, we can get these win-win scenarios,” she says.

The team showed that these privacy guarantees remained strong despite the algorithm they tested, and that the new variant of PAC Privacy required an order of magnitude fewer trials to estimate the noise. They also tested the method in attack simulations, demonstrating that its privacy guarantees could withstand state-of-the-art attacks.

“We want to explore how algorithms could be co-designed with PAC Privacy, so the algorithm is more stable, secure, and robust from the beginning,” Devadas says. The researchers also want to test their method with more complex algorithms and further explore the privacy-utility tradeoff.

“The question now is: When do these win-win situations happen, and how can we make them happen more often?” Sridhar says.

“I think the key advantage PAC Privacy has in this setting over other privacy definitions is that it is a black box — you don’t need to manually analyze each individual query to privatize the results. It can be done completely automatically. We are actively building a PAC-enabled database by extending existing SQL engines to support practical, automated, and efficient private data analytics,” says Xiangyao Yu, an assistant professor in the computer sciences department at the University of Wisconsin at Madison, who was not involved with this study.

This research is supported, in part, by Cisco Systems, Capital One, the U.S. Department of Defense, and a MathWorks Fellowship.

Picture of John Doe
John Doe

Sociosqu conubia dis malesuada volutpat feugiat urna tortor vehicula adipiscing cubilia. Pede montes cras porttitor habitasse mollis nostra malesuada volutpat letius.

Related Article

Leave a Reply

Your email address will not be published. Required fields are marked *

We would love to hear from you!

Please record your message.

Record, Listen, Send

Allow access to your microphone

Click "Allow" in the permission dialog. It usually appears under the address bar in the upper left side of the window. We respect your privacy.

Microphone access error

It seems your microphone is disabled in the browser settings. Please go to your browser settings and enable access to your microphone.

Speak now

00:00

Canvas not available.

Reset recording

Are you sure you want to start a new recording? Your current recording will be deleted.

Oops, something went wrong

Error occurred during uploading your audio. Please click the Retry button to try again.

Send your recording

Thank you

Meet Eve: Your AI Training Assistant

Welcome to Enlightening Methodology! We are excited to introduce Eve, our innovative AI-powered assistant designed specifically for our organization. Eve represents a glimpse into the future of artificial intelligence, continuously learning and growing to enhance the user experience across both healthcare and business sectors.

In Healthcare

In the healthcare category, Eve serves as a valuable resource for our clients. She is capable of answering questions about our business and providing "Day in the Life" training scenario examples that illustrate real-world applications of the training methodologies we employ. Eve offers insights into our unique compliance tool, detailing its capabilities and how it enhances operational efficiency while ensuring adherence to all regulatory statues and full HIPAA compliance. Furthermore, Eve can provide clients with compelling reasons why Enlightening Methodology should be their company of choice for Electronic Health Record (EHR) implementations and AI support. While Eve is purposefully designed for our in-house needs and is just a small example of what AI can offer, her continuous growth highlights the vast potential of AI in transforming healthcare practices.

In Business

In the business section, Eve showcases our extensive offerings, including our cutting-edge compliance tool. She provides examples of its functionality, helping organizations understand how it can streamline compliance processes and improve overall efficiency. Eve also explores our cybersecurity solutions powered by AI, demonstrating how these technologies can protect organizations from potential threats while ensuring data integrity and security. While Eve is tailored for internal purposes, she represents only a fraction of the incredible capabilities that AI can provide. With Eve, you gain access to an intelligent assistant that enhances training, compliance, and operational capabilities, making the journey towards AI implementation more accessible. At Enlightening Methodology, we are committed to innovation and continuous improvement. Join us on this exciting journey as we leverage Eve's abilities to drive progress in both healthcare and business, paving the way for a smarter and more efficient future. With Eve by your side, you're not just engaging with AI; you're witnessing the growth potential of technology that is reshaping training, compliance and our world! Welcome to Enlightening Methodology, where innovation meets opportunity!