Business

Decoding the Arctic to predict winter weather

Every autumn, as the Northern Hemisphere moves toward winter, Judah Cohen starts to piece together a complex atmospheric puzzle. Cohen, a research scientist in MIT’s Department of Civil and Environmental Engineering (CEE), has spent decades studying how conditions in the Arctic set the course for winter weather throughout Europe, Asia, and North America. His research dates back to his postdoctoral work with Bacardi and Stockholm Water Foundations Professor Dara Entekhabi that looked at snow cover in the Siberian region and its connection with winter forecasting.

Cohen’s outlook for the 2025–26 winter highlights a season characterized by indicators emerging from the Arctic using a new generation of artificial intelligence tools that help develop the full atmospheric picture.

Looking beyond the usual climate drivers

Winter forecasts rely heavily on El Niño–Southern Oscillation (ENSO) diagnostics, which are the tropical Pacific Ocean and atmosphere conditions that influence weather around the world. However, Cohen notes that ENSO is relatively weak this year.

“When ENSO is weak, that’s when climate indicators from the Arctic becomes especially important,” Cohen says.

Cohen monitors high-latitude diagnostics in his subseasonal forecasting, such as October snow cover in Siberia, early-season temperature changes, Arctic sea-ice extent, and the stability of the polar vortex. “These indicators can tell a surprisingly detailed story about the upcoming winter,” he says. 

One of Cohen’s most consistent data predictors is October’s weather in Siberia. This year, when the Northern Hemisphere experienced an unusually warm October, Siberia was colder than normal with an early snow fall. “Cold temperatures paired with early snow cover tend to strengthen the formation of cold air masses that can later spill into Europe and North America,” says Cohen — weather patterns that are historically linked to more frequent cold spells later in winter.

Warm ocean temperatures in the Barents–Kara Sea and an “easterly” phase of the quasi-biennial oscillation also suggest a potentially weaker polar vortex in early winter. When this disturbance couples with surface conditions in December, it leads to lower-than-normal temperatures across parts of Eurasia and North America earlier in the season.

AI subseasonal forecasting

While AI weather models have made impressive strides showcasing in short-range (one-to–10-day) forecasts, these advances have not yet applied to longer periods. The subseasonal prediction covering two to six weeks remains one of the toughest challenges in the field.

That gap is why this year could be a turning point for subseasonal weather forecasting. A team of researchers working with Cohen won first place for the fall season in the 2025 AI WeatherQuest subseasonal forecasting competition, held by the European Centre for Medium-Range Weather Forecasts (ECMWF). The challenge evaluates how well AI models capture temperature patterns over multiple weeks, where forecasting has been historically limited.

The winning model combined machine-learning pattern recognition with the same Arctic diagnostics Cohen has refined over decades. The system demonstrated significant gains in multi-week forecasting, surpassing leading AI and statistical baselines.

“If this level of performance holds across multiple seasons, it could represent a real step forward for subseasonal prediction,” Cohen says

The model also detected a potential cold surge in mid-December for the U.S. East Coast much earlier than usual, weeks before such signals typically arise. The forecast was widely publicized in the media in real-time. If validated, Cohen explains, it would show how combining Arctic indicators with AI could extend the lead time for predicting impactful weather.

“Flagging a potential extreme event three to four weeks in advance would be a watershed moment,” he adds. “It would give utilities, transportation systems, and public agencies more time to prepare.”

What this winter may hold

Cohen’s model shows a greater chance of colder-than-normal conditions across parts of Eurasia and central North America later in the winter, with the strongest anomalies likely mid-season.

“We’re still early, and patterns can shift,” Cohen says. “But the ingredients for a colder winter pattern are there.”

As Arctic warming speeds up, its impact on winter behavior is becoming more evident, making it increasingly important to understand these connections for energy planning, transportation, and public safety. Cohen’s work shows that the Arctic holds untapped subseasonal forecasting power, and AI may help unlock it for time frames that have long been challenging for traditional models.

In November, Cohen even appeared as a clue in The Washington Post crossword, a small sign of how widely his research has entered public conversations about winter weather.

“For me, the Arctic has always been the place to watch,” he says. “Now AI is giving us new ways to interpret its signals.”

Cohen will continue to update his outlook throughout the season on his blog.

Picture of John Doe
John Doe

Sociosqu conubia dis malesuada volutpat feugiat urna tortor vehicula adipiscing cubilia. Pede montes cras porttitor habitasse mollis nostra malesuada volutpat letius.

Related Article

Leave a Reply

Your email address will not be published. Required fields are marked *

X
"Hello! Let’s get started on your journey with us."
Site SearchBusiness ServicesBusiness Services

Meet Eve: Your AI Training Assistant

Welcome to Enlightening Methodology! We are excited to introduce Eve, our innovative AI-powered assistant designed specifically for our organization. Eve represents a glimpse into the future of artificial intelligence, continuously learning and growing to enhance the user experience across both healthcare and business sectors.

In Healthcare

In the healthcare category, Eve serves as a valuable resource for our clients. She is capable of answering questions about our business and providing "Day in the Life" training scenario examples that illustrate real-world applications of the training methodologies we employ. Eve offers insights into our unique compliance tool, detailing its capabilities and how it enhances operational efficiency while ensuring adherence to all regulatory statues and full HIPAA compliance. Furthermore, Eve can provide clients with compelling reasons why Enlightening Methodology should be their company of choice for Electronic Health Record (EHR) implementations and AI support. While Eve is purposefully designed for our in-house needs and is just a small example of what AI can offer, her continuous growth highlights the vast potential of AI in transforming healthcare practices.

In Business

In the business section, Eve showcases our extensive offerings, including our cutting-edge compliance tool. She provides examples of its functionality, helping organizations understand how it can streamline compliance processes and improve overall efficiency. Eve also explores our cybersecurity solutions powered by AI, demonstrating how these technologies can protect organizations from potential threats while ensuring data integrity and security. While Eve is tailored for internal purposes, she represents only a fraction of the incredible capabilities that AI can provide. With Eve, you gain access to an intelligent assistant that enhances training, compliance, and operational capabilities, making the journey towards AI implementation more accessible. At Enlightening Methodology, we are committed to innovation and continuous improvement. Join us on this exciting journey as we leverage Eve's abilities to drive progress in both healthcare and business, paving the way for a smarter and more efficient future. With Eve by your side, you're not just engaging with AI; you're witnessing the growth potential of technology that is reshaping training, compliance and our world! Welcome to Enlightening Methodology, where innovation meets opportunity!

[wpbotvoicemessage id="402"]