Business

MIT researchers propose a new model for legible, modular software

Coding with large language models (LLMs) holds huge promise, but it also exposes some long-standing flaws in software: code that’s messy, hard to change safely, and often opaque about what’s really happening under the hood. Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) are charting a more “modular” path ahead. 

Their new approach breaks systems into “concepts,” separate pieces of a system, each designed to do one job well, and “synchronizations,” explicit rules that describe exactly how those pieces fit together. The result is software that’s more modular, transparent, and easier to understand. A small domain-specific language (DSL) makes it possible to express synchronizations simply, in a form that LLMs can reliably generate. In a real-world case study, the team showed how this method can bring together features that would otherwise be scattered across multiple services.

The team, including Daniel Jackson, an MIT professor of electrical engineering and computer science (EECS) and CSAIL associate director, and Eagon Meng, an EECS PhD student, CSAIL affiliate, and designer of the new synchronization DSL, explore this approach in their paper “What You See Is What It Does: A Structural Pattern for Legible Software,” which they presented at the Splash Conference in Singapore in October. The challenge, they explain, is that in most modern systems, a single feature is never fully self-contained. Adding a “share” button to a social platform like Instagram, for example, doesn’t live in just one service. Its functionality is split across code that handles posting, notification, authenticating users, and more. All these pieces, despite being scattered across the code, must be carefully aligned, and any change risks unintended side effects elsewhere.

Jackson calls this “feature fragmentation,” a central obstacle to software reliability. “The way we build software today, the functionality is not localized. You want to understand how ‘sharing’ works, but you have to hunt for it in three or four different places, and when you find it, the connections are buried in low-level code,” says Jackson.

Concepts and synchronizations are meant to tackle this problem. A concept bundles up a single, coherent piece of functionality, like sharing, liking, or following, along with its state and the actions it can take. Synchronizations, on the other hand, describe at a higher level how those concepts interact. Rather than writing messy low-level integration code, developers can use a small domain-specific language to spell out these connections directly. In this DSL, the rules are simple and clear: one concept’s action can trigger another, so that a change in one piece of state can be kept in sync with another.

“Think of concepts as modules that are completely clean and independent. Synchronizations then act like contracts — they say exactly how concepts are supposed to interact. That’s powerful because it makes the system both easier for humans to understand and easier for tools like LLMs to generate correctly,” says Jackson. “Why can’t we read code like a book? We believe that software should be legible and written in terms of our understanding: our hope is that concepts map to familiar phenomena, and synchronizations represent our intuition about what happens when they come together,” says Meng. 

The benefits extend beyond clarity. Because synchronizations are explicit and declarative, they can be analyzed, verified, and of course generated by an LLM. This opens the door to safer, more automated software development, where AI assistants can propose new features without introducing hidden side effects.

In their case study, the researchers assigned features like liking, commenting, and sharing each to a single concept — like a microservices architecture, but more modular. Without this pattern, these features were spread across many services, making them hard to locate and test. Using the concepts-and-synchronizations approach, each feature became centralized and legible, while the synchronizations spelled out exactly how the concepts interacted.

The study also showed how synchronizations can factor out common concerns like error handling, response formatting, or persistent storage. Instead of embedding these details in every service, synchronization can handle them once, ensuring consistency across the system. 

More advanced directions are also possible. Synchronizations could coordinate distributed systems, keeping replicas on different servers in step, or allow shared databases to interact cleanly. Weakening synchronization semantics could enable eventual consistency while still preserving clarity at the architectural level.

Jackson sees potential for a broader cultural shift in software development. One idea is the creation of “concept catalogs,” shared libraries of well-tested, domain-specific concepts. Application development could then become less about stitching code together from scratch and more about selecting the right concepts and writing the synchronizations between them. “Concepts could become a new kind of high-level programming language, with synchronizations as the programs written in that language.”

“It’s a way of making the connections in software visible,” says Jackson. “Today, we hide those connections in code. But if you can see them explicitly, you can reason about the software at a much higher level. You still have to deal with the inherent complexity of features interacting. But now it’s out in the open, not scattered and obscured.”

“Building software for human use on abstractions from underlying computing machines has burdened the world with software that is all too often costly, frustrating, even dangerous, to understand and use,” says University of Virginia Associate Professor Kevin Sullivan, who wasn’t involved in the research. “The impacts (such as in health care) have been devastating. Meng and Jackson flip the script and insist on building interactive software on abstractions from human understanding, which they call ‘concepts.’ They combine expressive mathematical logic and natural language to specify such purposeful abstractions, providing a basis for verifying their meanings, composing them into systems, and refining them into programs fit for human use. It’s a new and important direction in the theory and practice of software design that bears watching.”

“It’s been clear for many years that we need better ways to describe and specify what we want software to do,” adds Thomas Ball, Lancaster University honorary professor and University of Washington affiliate faculty, who also wasn’t involved in the research. “LLMs’ ability to generate code has only added fuel to the specification fire. Meng and Jackson’s work on concept design provides a promising way to describe what we want from software in a modular manner. Their concepts and specifications are well-suited to be paired with LLMs to achieve the designer’s intent.”

Looking ahead, the researchers hope their work can influence how both industry and academia think about software architecture in the age of AI. “If software is to become more trustworthy, we need ways of writing it that make its intentions transparent,” says Jackson. “Concepts and synchronizations are one step toward that goal.”

This work was partially funded by the Machine Learning Applications (MLA) Initiative of CSAIL Alliances. At the time of funding, the initiative board was British Telecom, Cisco, and Ernst and Young. 

Picture of John Doe
John Doe

Sociosqu conubia dis malesuada volutpat feugiat urna tortor vehicula adipiscing cubilia. Pede montes cras porttitor habitasse mollis nostra malesuada volutpat letius.

Related Article

Leave a Reply

Your email address will not be published. Required fields are marked *

X
"Hello! Let’s get started on your journey with us."
Site SearchBusiness ServicesBusiness Services

Meet Eve: Your AI Training Assistant

Welcome to Enlightening Methodology! We are excited to introduce Eve, our innovative AI-powered assistant designed specifically for our organization. Eve represents a glimpse into the future of artificial intelligence, continuously learning and growing to enhance the user experience across both healthcare and business sectors.

In Healthcare

In the healthcare category, Eve serves as a valuable resource for our clients. She is capable of answering questions about our business and providing "Day in the Life" training scenario examples that illustrate real-world applications of the training methodologies we employ. Eve offers insights into our unique compliance tool, detailing its capabilities and how it enhances operational efficiency while ensuring adherence to all regulatory statues and full HIPAA compliance. Furthermore, Eve can provide clients with compelling reasons why Enlightening Methodology should be their company of choice for Electronic Health Record (EHR) implementations and AI support. While Eve is purposefully designed for our in-house needs and is just a small example of what AI can offer, her continuous growth highlights the vast potential of AI in transforming healthcare practices.

In Business

In the business section, Eve showcases our extensive offerings, including our cutting-edge compliance tool. She provides examples of its functionality, helping organizations understand how it can streamline compliance processes and improve overall efficiency. Eve also explores our cybersecurity solutions powered by AI, demonstrating how these technologies can protect organizations from potential threats while ensuring data integrity and security. While Eve is tailored for internal purposes, she represents only a fraction of the incredible capabilities that AI can provide. With Eve, you gain access to an intelligent assistant that enhances training, compliance, and operational capabilities, making the journey towards AI implementation more accessible. At Enlightening Methodology, we are committed to innovation and continuous improvement. Join us on this exciting journey as we leverage Eve's abilities to drive progress in both healthcare and business, paving the way for a smarter and more efficient future. With Eve by your side, you're not just engaging with AI; you're witnessing the growth potential of technology that is reshaping training, compliance and our world! Welcome to Enlightening Methodology, where innovation meets opportunity!

[wpbotvoicemessage id="402"]